Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors

نویسندگان

  • Rolf Rannacher
  • Jevgeni Vihharev
چکیده

This article continues prior work of the authors on the combined a posteriori analysis for the discretization and iteration errors in the finite element approximation of linear elliptic problems to the nonlinear case. The underlying theoretical framework is again that of the Dual Weighted Residual (DWR) method for goal-oriented error control. The accuracy in the algebraic solution process can be balanced with that due to discretization using computable a posteriori error estimates in which the outer nonlinear and inner linear iteration errors are separated from the discretization error. This results in effective stopping criteria for the algebraic iteration, which are elaborated particularly for Newton-type methods. The performance of the proposed strategies is demonstrated for several nonlinear test problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Inexact Newton Multilevel FEM for Nonlinear Elliptic Problems

The finite element setting for nonlinear elliptic PDEs directly leads to the minimization of convex functionals. Uniform ellipticity of the underlying PDE shows up as strict convexity of the arising nonlinear functional. The paper analyzes computational variants of Newton’s method for convex optimization in an affine conjugate setting, which reflects the appropriate affine transformation behavi...

متن کامل

Finite-element discretization of static Hamilton-Jacobi equations based on a local variational principle

We propose a linear finite-element discretization of Dirichlet problems for static Hamilton–Jacobi equations on unstructured triangulations. The discretization is based on simplified localized Dirichlet problems that are solved by a local variational principle. It generalizes several approaches known in the literature and allows for a simple and transparent convergence theory. In this paper the...

متن کامل

A Balancing Domain Decomposition Method by Constraints for Advection-diffusion Problems

The balancing domain decomposition methods by constraints are extended to solving nonsymmetric, positive definite linear systems resulting from the finite element discretization of advection-diffusion equations. A preconditioned GMRES iteration is used to solve a Schur complement system of equations for the subdomain interface variables. In the preconditioning step of each iteration, a partiall...

متن کامل

Global Inexact Newton Multilevel FEM for Nonlinear Elliptic Problems

The paper deals with the multilevel solution of elliptic partial differential equations (PDEs) in a finite element setting: uniform ellipticity of the PDE then goes with strict monotonicity of the derivative of a nonlinear convex functional. A Newton multigrid method is advocated, wherein linear residuals are evaluated within the multigrid method for the computation of the Newton corrections. T...

متن کامل

Geometrically nonlinear analysis of axially functionally graded beams by using finite element method

The aim of this paper is to investigate geometrically nonlinear static analysis of axially functionally graded cantilever beam subjected to transversal non follower load. The considered problem is solved by finite element method with total Lagrangian kinematic approach. The material properties of the beam vary along the longitudinal direction according to the power law function. The finite elem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Num. Math.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2013